Exponentially Fitted Error Correction Methods for Solving Initial Value Problems
نویسندگان
چکیده
In this article, we propose exponentially fitted error correction methods(EECM) which originate from the error correction methods recently developed by the authors (see [10, 11] for examples) for solving nonlinear stiff initial value problems. We reduce the computational cost of the error correction method by making a local approximation of exponential type. This exponential local approximation yields an EECM that is exponentially fitted, A-stable and L-stable, independent of the approximation scheme for the error correction. In particular, the classical explicit Runge-Kutta method for the error correction not only saves the computational cost that the error correction method requires but also gives the same convergence order as the error correction method does. Numerical evidence is provided to support the theoretical results.
منابع مشابه
On the Leading Error Term of Exponentially Fitted Numerov Methods
Abstract. Second-order boundary value problems are solved with exponentially-fltted Numerov methods. In order to attribute a value to the free parameter in such a method, we look at the leading term of the local truncation error. By solving the problem in two phases, a value for this parameter can be found such that the tuned method behaves like a sixth order method. Furthermore, guidelines to ...
متن کاملAn efficient numerical method for singularly perturbed second order ordinary differential equation
In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...
متن کاملExponentially Fitted Fifth-Order Two-Step Peer Explicit Methods
The so called peer methods for the numerical solution of Initial Value Problems (IVP) in ordinary differential systems were introduced by R. Weiner et al [6, 7, 11, 12, 13] for solving different types of problems either in sequential or parallel computers. In this work, we study exponentially fitted three-stage peer schemes that are able to fit functional spaces with dimension six. Finally, som...
متن کاملTrigonometrically fitted two-step obrechkoff methods for the numerical solution of periodic initial value problems
In this paper, we present a new two-step trigonometrically fitted symmetric Obrechkoff method. The method is based on the symmetric two-step Obrechkoff method, with eighth algebraic order, high phase-lag order and is constructed to solve IVPs with periodic solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. The numeri...
متن کاملExponentially Fitted Variants of the Two-Step Adams-Bashforth Method for the Numerical Integration of Initial Problems
In this paper, we propose new variants of the two-step Adams-Bashforth and the one-step Adams-Moulton methods for the numerical integration of ordinary differential equations (ODEs). The methods are constructed geometrically from an exponentially fitted osculating parabola. The accuracy and stability of the proposed variants is discussed and their applicability to some initial value problems is...
متن کامل